| ||
Искательные алгоритмыВладимир Ткачук Те, кто имеет несчастье часто работать с текстовыми редакторами, знают цену функции нахождения нужных слов в тексте, существенно облегчающей редактирование документов и поиск нужной информации. Господа программисты тоже это знают, благо вплоть до самой компиляции программы им приходится работать в текстовом редакторе. Итак, пусть у нас есть текст, состоящий из n символов, который в дальнейшем договоримся называть T, а T[i] его i-ый символ. Строку или просто слово, состоящее из m символов, назовем S, где S[i] i-ый символ строки. Нам нужно проверить, входит ли данная строка в данный текст, и если входит, то начиная с какого символа текста. В этой статье мы рассмотрим несколько известных алгоритмов, решающих поставленную задачу. Простейший алгоритмСуть метода, о котором пойдет речь ниже, заключается в следующем: мы проверяем, совпадают ли m символов текста (начиная с выбранного) с символами нашей строки, пытаясь примерить шаблон куда только возможно. Естественно, реализовать описанный алгоритм проще всего (код на языке Pascal): Просто и элегантно, вроде так и надо. Действительно, это несложно в исполнении, но и не очень эффективно на практике. Давайте оценим скорость работы этой программки. В ней присутствуют два цикла (один вложенный), время работы внешнего большей степенью зависит от n, а внутренний в худшем случае делает m операций. Таким образом, время работы всего алгоритма есть O((n-m+1)m). Для маленьких строк поиск проработает быстро, но если в каком-то многомегабайтном файле вы будете искать последовательность длинной 100 Кб, то, боюсь, придется вам ждать ну очень долго. Впрочем, как я уже говорил, многим хватает и этого. Как вы уже, наверное, поняли, основной недостаток вышеизложенного метода состоит в том, что приходится выполнять много лишней работы. Например, найдя строку aabc и обнаружив несоответствие в четвертом символе (совпало только aab), алгоритм будет продолжать сравнивать строку, начиная со следующего символа, хотя это однозначно не приведет к результату. Следующий метод работает намного быстрее простейшего, но, к сожалению, накладывает некоторые ограничения на текст и искомую строку. Алгоритм Рабина-КарпаИдея, предложенная Рабином и Карпом, подразумевает поставить в соответствие каждой строке некоторое уникальное число, и вместо того чтобы сравнивать сами строки, сравнивать числа, что намного быстрее. Проблема в том, что искомая строка может быть длинной, строк в тексте тоже хватает. А так как каждой строке нужно сопоставить уникальное число, то и чисел должно быть много, а стало быть, числа будут большими (порядка Dm, где D количество различных символов), и работать с ними будет так же неудобно. Ниже вы узнаете, как найти выход из этого положения, а пока смотрите реализацию для текста, состоящего только из цифр, и строки длиной до 8 символов. Этот алгоритм выполняет линейный проход по строке (m шагов) и линейный проход по всему тексту (n шагов), стало быть, общее время работы есть O(n+m). Это время линейно зависит от размера строки и текста, стало быть программа работает быстро. Но какой интерес работать только с короткими строками и цифрами? Разработчики алгоритма придумали, как улучшить этот алгоритм без особых потерь в скорости работы. Как вы заметили, мы ставили в соответствие строке ее числовое представление, но возникала проблема больших чисел. Ее можно избежать, если производить все арифметические действия по модулю какого-то простого числа (постоянно брать остаток от деления на это число). Таким образом, находится не само число, характеризующие строку, а его остаток от деления на некое простое число. Теперь мы ставим число в соответствие не одной строке, а целому классу, но так как классов будет довольно много (столько, сколько различных остатков от деления на это простое число), то дополнительную проверку придется производить редко. Итак, нам все-таки приходится производить сравнение строк посимвольно, но так как «холостых» срабатываний будет немного (в 1/P случаях), то ожидаемое время работы малое. Строго говоря, время работы есть O(m+n+mn/P), mn/P достаточно невелико, так что сложность работы почти линейная. Понятно, что простое число следует выбирать большим, чем больше это число, тем быстрее будет работать программа. Этот алгоритм значительно быстрее предыдущего и вполне подходит для работы с очень длинными строками. Еще один важный метод, о котором я хочу рассказать, алгоритм Кнута-Морриса-Пратта, один из лучших на нынешний момент, работает за линейное время для любого текста и любой строки. Алгоритм Кнута-Морриса-ПраттаМетод использует предобработку искомой строки, а именно: на ее основе создается так называемая префикс-функция. Суть этой функции в нахождении для каждой подстроки S[1..i] строки S наибольшей подстроки S[1..j] (j<i), присутствующей одновременно и в начале, и в конце подстроки (как префикс и как суффикс). Например, для подстроки abcHelloabc такой подстрокой является abc (одновременно и префиксом, и суффиксом). Смысл префикс-функции в том, что мы можем отбросить заведомо неверные варианты, т.е. если при поиске совпала подстрока abcHelloabc (следующий символ не совпал), то нам имеет смысл продолжать проверку продолжить поиск уже с четвертого символа (первые три и так совпадут). Вот как можно вычислить эту функцию для всех значений параметра от 1 до m: Теперь разберемся, почему же данная процедура вычисляет префикс-функцию правильно. Используется следующая идея: если префикс (он же суффикс) строки длинной i длиннее одного символа, то он одновременно и префикс подстроки длинной i-1. Таким образом, мы проверяем префикс предыдущей подстроки, если же тот не подходит, то префикс ее префикса, и т.д. Действуя так, находим наибольший искомый префикс. Следующий вопрос, на который стоит ответить: почему время работы процедуры линейно, ведь в ней присутствует вложенный цикл? Ну, во-первых, присвоение префикс-функции происходит четко m раз, остальное время меняется переменная k. Так как в цикле while она уменьшается (P[k]<k), но не становится меньше 0, то уменьшаться она может не чаще, чем возрастать. Переменная k возрастает на 1 не более m раз. Значит, переменная k меняется всего не более 2m раз. Выходит, что время работы всей процедуры есть O(m). А сейчас мы переходим к самой программе, ищущей строку в тексте. Доказать что эта программа работает за линейное время, можно точно так же, как и для процедуры Prefix. Стало быть, общее время работы программы есть O(n+m), т. е. линейное время. Напоследок хочу заметить, что простейший алгоритм и алгоритм Кнута-Морриса-Пратта помимо нахождения самих строк считают, сколько символов совпало в процессе работы. И еще: алгоритм Кнута-Морриса-Пратта немногим более громоздок, чем простейший, зато работает намного быстрее. Так что делайте выводы. P.S. Все программы проверены на работоспособность, достаточно вставить соответствующие сегменты кода вместо многоточий. Источник: http://www.mycomp.com.ua/
| ||
Copyright © "Internet Zone", http://www.izcity.com/, info@izcity.com |